A Guide to Chemical Grades

Chemicals are key for many products in commercial, industrial, and consumer industries. Creating proper formulations is merely the beginning of the process, but manufacturers need a product to use and one that meets whatever specifications necessary to ensure performance, purity, integrity, and safety. These specifications and requirements are outlined by organizations such as the United States Pharmacopeia (USP), American Chemical Society (ACS), and many others.

Why do Chemical Grades Matter?

These grades indicate the purity and quality of a chemical. Certain applications such as consumer or medical products, require stringent quality standards compared to industrial or educational applications. It is important to know what grade you need so you do not make costly mistakes or non-compliant products.

For example, all drug and drug products in the United States must be in compliance with USP-NF current standards as outlined in the USP-NF Compendium of monographs. Each chemical has a monograph that serves as a standard. These monographs provide information about a chemical’s appearance, solubility, weight, safety, and purity. Purity standards will include testing information and acceptable results. These purity standards help control quality and maintain the integrity of chemicals and end-products. The FDA approves all products and is responsible for compliance and regulation of food, drug, and other consumer products.

What are Some of the Chemical Grades?

There are a variety of chemical grades including industry-wide standards and some specialized for specific scientific applications. We will highlight some common grades used in commercial, industrial, and consumer applications. Some key grades are:

  • ACS Grade: Chemicals that are ACS grade meet or exceed standards set forth by the American Chemical Society. This is the most stringent grade and requires high purity. Products with ACS grade are acceptable for use in food, drug, or medicinal uses.
  • FCC Grade: Chemicals that are FCC grade meet standards outlined in the Food Chemicals Codex. The FCC was acquired by the USP, but still uses the Codex for food chemical standards. This applies specifically for food ingredients and includes special tests for toxicity and ensure suitability for human consumption. The FCC is not officially recognized in the United States, but FCC standards are incorporated into hundreds of FDA food regulations.
  • Lab Grade: Chemicals labelled as Lab Grade have unknown levels of impurities. These are popular for educational or demonstration purposes. However, they fail to meet purity standards for food, drug, or medicinal uses.
  • Reagent Grade: Chemicals with a Reagent Grade generally equal ACS grade standards. These are acceptable for food, drug, and medicinal use and are suitable for use in many laboratory and analytical applications.
  • Pharmaceutical Grade (USP): Chemicals with a Pharmaceutical Grade meet or exceed requirements of a national pharmacopeia. The most common pharmacopeia is USP, but these can meet the standards of the British, Japanese, European, and other pharmacopeias. Many countries incorporate USP standards into their own national pharmacopeia.
  • Technical Grade: Chemicals meeting a Technical grade are used for commercial and industrial purposes. It is not pure enough to be used in any food, drug, or medicinal applications. Like Lab Grade chemicals, these are suitable for demonstration purposes.

Considerations for Selecting a Grade

It is critical to know these grades and which one is required for you process as these grades ascertain: identity, potency, purity, and performance. Having chemicals that are certified ensure your commercial, industrial, or consumer products are in compliance of all standard and regulations. If you need to substitute for cost or availability reasons, it is important to understand these grades as well as the following considers:

  • What is the minimum grade required? Can I use a lower quality grade?
  • What are the differences and similarities of the grades considered?
  • What are the regulatory and economic consequences of the higher or lower grade?

When making a decision on chemical grades, keep these considerations in mind as well as understanding regulatory considerations. Understanding these grades will reduce headaches and confusion and ensure you are making the best product possible. Twin Specialties has a large catalog of chemicals and chemical substitutes that meet your manufacturing need.

What are Biodegradable Lubricants?

As the world’s petroleum reserves are extracted, scarcity increases, thus driving oil and lubricant prices higher. This economic burden will force end-users and manufacturers to develop alternatives that are cost effective, readily available, and sustainable. The answer to these concerns are biodegradable lubricants.

Biodegradable Lubricants Defined

Biodegradable lubricants have the ability to degrade naturally by the actions of biological organisms. Petroleum is naturally occurring and is considered inherently biodegradable. However, that does not mean they can be marketed, sold, and treated as biodegradable. When we refer to biodegradable lubricants, we are discussing lubricants that are readily biodegradable.

Determining Biodegradability

Biodegradable lubricants must meet the ISO 9439 or OECD 301B standards. These standards state that a lubricant that has degraded by more than 60% within 28 days is readily biodegradable. The tests involve treating a lubricant sample with microorganisms in the presence of oxygen and measuring the CO2 produced by the microorganisms. As mentioned before, petroleum-based lubricants are inherently biodegradable, but not readily biodegradable because they fail to meet these standards. Petroleum-based lubricants naturally degrade at a rate of 15-35% in 28 days, falling short of the required 60%.

Additionally, the lubricant must be of “low toxicity.” There are a variety of tests used to determine toxicity. These tests involve fish, daphnia, and other organisms. In their pure form, mineral oil and vegetable oil show little toxicity, but lubricants are not just pure oil. As additives are incorporated into formulations, the toxicity increases. Additives are added to make up for any performance shortcomings of biodegradable base stocks.

Types of Biodegradable Base Stocks

Most biodegradable lubricants use vegetable oil, synthetic esters, polyalkylene glycols (PAGs), or a combination of these as base stocks. Vegetable oils have been used for years when petroleum was in short supply. They were popular during World War I and World War II due to oil rationing and came back in popularity during oil embargo in the 1970s. Vegetable oils declined in popularity due to the availability of low-cost oil after Desert Storm. Their popularity is beginning to rise as more manufacturers and end-users are faced with climate change and sustainability concerns. Some common vegetable oils used are soybean oil, cottonseed oil, olive oil, sunflower oil, and canola oil. To improve performance, farmers are beginning to grow genetically modified crops that are designed and engineered for use in lubricants.

Synthetic base stocks, such as esters and PAGs, are also used to boost performance when vegetable oils cannot get the job done. PAGs are effective, however they have a few issues that should be considered. PAGs are incompatible with other oils and can cause problems if inadvertently mixed with non-PAG oils. PAGs can also react poorly with seals and paints. This is why synthetic esters are preferred for biodegradable lubricants. Synthetic esters are typically added to vegetable-oil based lubricants to improve low temperature properties. These serve better than light mineral oils as synthetic esters are less toxic and more biodegradable.

Biodegradable Lubricant Products

Many applications and machines now can be lubricated with biodegradable lubricants and meet all performance requirements. Products that can be composed of soybean oils include:

  • Food grade hydraulic fluids and greases
  • Automotive, railroad, and machine greases
  • Tractor transmission and industrial hydraulic fluids
  • Chainsaw bar oils
  • Gear lubricants
  • Compressor oils
  • Transmission and transformer line cooling fluids

Many more products are in development and could become viable in lubricant markets soon. These include:

  • Two-cycle engine oils
  • Metalworking fluids
  • Specialty lubricants

With more resources and demand for biodegradable lubricants, engineers and manufacturers can research and develop more products that perform more applications, perform better than mineral oils, and remain price competitive.

Biodegradable lubricants are highly popular in applications and industries where environmental and safety concerns are high. Marine and agricultural industries need these lubricants as contamination could have devastating effects. According to Total Lubricants, a single liter of oil can pollute as much as 1,000,000 liters of water. In those applications, biodegradable lubricants are essential. Some government regulations ensure that these industries use biodegradable lubricants that do not harm consumers and operators in the event of leakage.

Twin Specialties Offers Biodegradable Lubricants

No matter your application or environmental requirements, Twin Specialties can meet your manufacturing, marine, or agricultural needs. We offer a variety of lubricants including: Shell Naturelle, Castrol Performance Bio, and various Food Grade lubricants. Contact Twin Specialties for a quote.

A Guide to Food Grade Lubricants

In the food and beverage industry, health, safety, and quality are of the utmost importance. The ever-evolving standards of food and beverage safety make it important to ensure your plant is deploying the proper lubricants and cleaners. Not only do you have to meet performance standards, you also have to monitor leakage to ensure that final products are not getting contaminated. We will examine the evolving standards of food-grade lubricants and cleaners as well as the challenges in finding the right products to meet both health and performance standards.

From USDA to NSF

The original designations created by the USDA sought to organize food-grade lubricants into three categories. The current standards are listed below for each category:

  • H1 lubricants are used in food-processing environments where there is the possibility of incidental food contact. These lubricants are tasteless, odorless and inert. H1 lubricants are safe for human consumption in small amounts, under 10 parts per million (ppm). They are most often used in for machinery such as conveyors and mixers. Applications of these lubricants include: blending, cutting, bottling, brewing and many more.
  • H2 lubricants are used on equipment and parts where there is no possibility of incidental food contact, such as forklifts. Even though there is no contact, H2 lubricants must adhere to strict toxicology standards. H2 lubricants may not contain trace elements of: carcinogens, mutagens, teratogens, mineral acids or heavy metals.
  • H3 soluble oils are used to prevent rust on hooks, trolleys, and similar equipment. These products are typically made of edible oils such as: corn oil, sunflower oil or soybean oil. H3 lubricants are inherently biodegradable and comply with 21 CFR Section 172.860 and 172.878. They also comply with 21 CFR 182 and 184 in regards to GRAS substances.
  • 3H release agents are used on surfaces with direct contact to prevent food from adhering during processing. These lubricants can be used to aid in processes where contact is unavoidable, such as removing baked goods from a mold.
  • HT1 are heat transfer fluids used in primary and secondary heating and cooling systems in food processing facilities. These must comply with 21 CFR 178.3570 and 21 CFR 172.

The USDA served as an authority for approval and compliance. Manufacturers had to prove all components were allowable substances under 21 CFR 178.3570. The USDA stopped issuing registrations on September 30, 1998. Since then, many organizations have adopted and modified these standards.

After 1998, The German Institute for Standardization (DIN) submitted a standard to the International Organization for Standardization (ISO). Eventually the ISO adopted ISO 21469, which pertains to lubricant manufacturing, and ISO 22000, which pertains to food safety systems. However, the most recognized standards are those put forth by the National Sanitation Foundation (NSF).

As a successor to the USDA, the NSF has updated the USDA standards to improve health and safety for consumers. The current NSF standards are similar to the old USDA standards, using the H1, H2, and H3 designations. Additionally, the NSF created the HX-1 standard for ingredients. These HX-1 ingredients are pre-screened and meet requirements for finished H1 lubricants. The NSF has established itself as the recognized international standard and operates in over 80 countries around the world.

Selecting your Food-Grade Product

In the food & beverage industry, health and safety is by far the most important concern. One contamination, recall, or illness outbreak can do irreparable damage to a company’s brand and business. Therefore, it is imperative to consider selecting products that go beyond required standards. Opting to use H1 lubricants is an excellent example of meeting compliance and protecting your brand. This eliminates the possibility of using an H2 lubricant when an H1 is required. H1 lubricants can act as insurance to your brand’s equity and will reduce liability in the event of equipment or plant issues.

Performance is key when selecting a lubricant, but achieving peak performance may be more difficult with food-grade lubricants. H1 products tended to fall short compared to their H2 counterparts. This was due to the limited number of H1-registered additives compared to H2-registered additives (including zinc-based components).Food & Beverage

New NSF HX-1 additive packages have dramatically improved the performance of H1 lubricants while also meeting the rigorous standards set forth by NSF H1 lubricants. For grease thickeners, aluminum sterate, aluminum complex, organo clay, polyurea and calcium sulfonate meet H1 standards (lithium thickened greases do not). You can now use an H1 lubricant and achieve the high performance demanded from your business. It simplifies the selection process by allowing you to use H1 lubricants throughout your plant.

These additives are now paired with synthetic base oils such as polyalphaolefins (PAOs), polyalkylene glycols (PAGs), and esters. These base oils along with HX-1 additives can deliver premium performance while protecting the integrity of your brand. Selecting a product also depends on your specific processes and it is important to consider unique contaminants that may affect product performance.

Other considerations may include dietary standards. It is important to ensure your lubricant meets any Kosher or Halal requirements. Failing to do so may result in products not suitable for those whose follow Kosher or Halal diets. This results in a smaller customer base and will affect bottom lines. It could damage brand integrity if a product is marketed as Kosher or Halal and is later found to fall short of these requirements.

Takeaways

Although no government is responsible for food-grade lubricant standards, the NSF has established itself as a leader in food-grade lubricant regulations. Operating as a nonprofit in over 80 countries, the NSF ensures that your food-grade lubricants meet their rigorous standards. Modern advancements in additive technology and base oil technology have led to lubricants that are NSF compliant and meet the highest performance standards. There is no need to sacrifice safety for quality anymore.

Twin Specialties offers a wide-range of food-grade products including lubricants and cleaners. We offer products from Castrol, CRC, Lubriplate, and many more to meet your food and beverage manufacturing needs. Contact us to learn more or get a quote.