How to Manage your Metalworking Fluids

Metalworking fluids may not contribute that much to your manufacturing costs, but when fluids begin to fail or not work as intended, the costs could be astronomical. With the increasing costs of more technological fluids and rising disposal costs, managing your fluid and fluid consumption is more important than ever. Managing your fluids and dedicating a fluid management program could pay dividends by: reducing fluid usage, extending tool life, and improving manufacturing performance.

Monitoring Concentration

Fluid technology has advanced by leaps and bounds over the years and have improved performance for manufacturers. However, these advanced fluids have been engineered to work at specific concentrations. Running a coolant too thin or too rich will limit its ability to do its job. Running a coolant too rich might cause problems of over lubricity, but the main problem is overconsumption of the fluid.

The big problems occur when a fluid is too thin. This means the concentration in the sump is below the manufacturer’s recommendation. The additive packages are designed based on these minimum concentrations and provide enough of each additive to perform its function properly. Less concentrate means fewer biocides, fewer rust inhibitors, fewer emulsion stabilizers, etc. Eventually, the fluid breaks down quicker requiring more frequent change-outs. Some managing fluids, some operators use coolant additives/boosts to improve performance. If you vigilantly monitor concentration, the need for additives will lessen and thus reduce costs.

To monitor concentration, use a refractometer to measure concentration frequently. It is recommended to measure concentration every day or twice a day (depending on your operating schedule). The same person should measure to ensure consistency and ensure reliable measurements. When charging or recharging sumps, using automatic mixers helps ensure concentration is consistent. Remember, do not add just coolant or just water to the sump to balance out concentration. Some facilities use digital coolant monitoring systems to manage concentration, pH, and other factors. Facilities with large coolant systems may benefit from the technology.

Assessing Water Quality

Water comprises 90% or more of the fluid in the sump, thus it is crucial to make sure you are using good water. A common problem is hard water. The ions in hard water can cause chemical instability and increase the likelihood for emulsion splitting. Testing and treating your water is recommended to make sure your sump mix is working as intended. Twin Specialties can test samples of your tap water to ensure it is suitable for use in your metalworking fluid. If your tap water is excessively hard, installing a de-ionized water line is recommended for your facility. Coolant mixers can be connected directly to these lines to ensure proper mixing.

Once your water is deemed suitable, mixing the oil and water is all that is left in preparation. For the best performance and increased emulsion stability, follow the acronym O.I.L.: oil in last. This is an easy to remember acronym that will help you manually mix coolant; automatic mixers already mix using best practices.

Monitoring pH

Alkalinity is critical in the performance of your fluid. If the pH dips too low, it will no longer work and will need to be changed out. If pH drops below 8, it is imperative to raise it immediately. If pH drops below 7, the coolant is lost and must be changed. As the coolant gets more acidic (decreasing pH) you increase your risk of rusting problems. Some additives boost pH, but those may not be needed if you actively monitor your concentration. Monitoring is relatively easy, mix the fluid in the sump to get a more homogenized solution then dip a pH testing strip into the solution. Give the strip some time to change color and then match the strip to a reference sheet (usually provided with the strips). Then you can act accordingly armed with the pH information you need.

Tramp Oil Removal

Slideways and spindles require oil lubricants in order to function properly and ensure proper machining operations. These oil lubricants will leak into the sump and can cause havoc on your metalworking fluid. Some of the lubricant will be emulsified and disrupt the chemical composition of your metalworking fluid. The more oil content in the concentrate, the more likely the tramp oil will be emulsified.

This causes the growth of anaerobic bacteria. This bacterium creates hydrogen sulfide gas, which is the “rotten egg” or “Monday morning” smell that indicates coolant rancidity. The hydrogen sulfide in water also produces acids that drive down pH and alkalinity, which further damages coolant.

Synthetic coolants are excellent in rejecting tramp oils and prevent them from being emulsified. These floating oils can easily be skimmed and removed before causing damage. Using coolants below recommended concentrations limit the tramp oil rejecting additives and can accelerate this process of degradation.

Floating tramp oil can increase oil mist and smoke formation that can damage machines. The tramp oil mist also increases residues on the machine that can clog filters and destroy critical electronic components. Removing floating oil is relatively easy. Installing a skimmer, centrifuge, and/or coalescer will remove tramp oil from the sump and extend your coolants life.

Filtration

Metal fines and chips may find their way into the sump. It is important that they do not remain there and are not cycled through the machine. These fines can cause wear and damage to the machine and workpiece. The fines can build up and create dead-zones when additives are trapped and do not work. The trapped additives cannot work and lead to accelerated coolant breakdown.

Filtration used to be a cost-prohibitive endeavor, but the economics of coolant management and consumption make filters a worthwhile tool. The costs of filtration have come down and filtration technology has improved, thus implementing them will reduce coolant consumption and coolant spending.

Removing Foreign Substances from the Sump

Dirt and other foreign substances can cause problems such as abrasion and pump damage. Filtering solid substances and removing them will improve coolant performance. Sump cleaners might not be fully removed and can cause excessive foaming. If that happens, using a defoamer should alleviate these issues. However, be sure to properly remove the cleaner before recharging the sump. Prevention and proper preparation are usually the best maintenance.

Managing Straight Oil/Neat Oil

Neat oils require much less maintenance than water soluble coolants. This is because neat oils do not require water, which is a breeding ground for bacteria, fungi, and mold. However, there are still a few things that you should do to maintain and extend fluid life. The main thing should be done is filtering metal fines. Removing these metal fines improve finishing and fluid performance.

Takeaways

Given the rising costs and improving technology of metalworking fluids, it is more important than ever to proactively manage your fluids. This can lead to extended use intervals and improved performance. Following these steps will allow your machine to get the most out of these fluids.

Twin Specialties provides a full line of metalworking fluids and additives. Additionally, our sales team will work with you to test your fluids and water to troubleshoot the problem. Contact Twin Specialties for more information about our metalworking fluids, technical expertise, and our testing and sampling program.

What are Fire Resistant Lubricants?

Fire-resistant lubricants are fluids that are used in applications and systems where the risk of ignition is high. Typically, these environments are near or contain: open flames, sparks, or hot metals. If an oil leak were to occur, the risk of injury, damage, and even death is magnified as sustained fires can occur. That is why fire-resistant lubricants have been developed and manufactured to protect personnel and equipment.

Why do I need a Fire-Resistant Lubricant?

Fire-resistant lubricants are most needed in environments need high-temperature surfaces and open flames. Regular fluids that have low flash points pose the greatest risks to fire and should be switched for fire-resistant lubricants that have higher flash points.

If using pressurized hydraulic lines, it is key to have a fluid with a high flash point as small leaks can aerosolize the lubricant easily. The lubricant spray is much more susceptible to fire. It takes much less heat to ignite and can spread to fluid reservoirs. The lubricant can ignite if it’s fire point and/or auto-ignition point is reached. The fire point is the temperature at which a fire is sustained and is typically several (50+) degrees higher than the flash point. Opting for fire-resistant fluids with higher flash points will reduce the risk of fire and damage.

Fire-Resistance Fluid Standards

The term “Fire Resistant” and “Fire Resistance” are often misinterpreted and sometimes overused. There is no single property or metric that conveys relative fire resistance. Metrics like flash point, fire point, and autoignition temperature are useful, but do not tell the whole story. Because of this, most fluids are vigorously tested and are classified as “fire resistant” if it can pass various tests and simulations.

The Factory Mutual Research Corporation (FM) developed key benchmarks for testing fire-resistance. FM tests every single commercially available “Fire Resistant” fluid to ensure it meets various benchmarks. FM 6930 is the standard for hydraulic fluids and is classified into 3 levels: 0, 1, and 2. This standard only measures a fluid’s flammability and does not consider other factors of the lubricant.

The Mine Safety & Health Administration (MSHA) has their own tests and standards for underground mines and applications. Their stringent testing produces more failures than FM. Both programs has strict auditing and inspection programs to ensure fire-resistant fluids meet performance standards.

Types of Fire-Resistant Lubricants

Oil-Water Emulsions

There are 2 types of oil-water emulsion fluids: oil-in-water and water-in-oil. Oil-in-water emulsions are formulated with oil droplets sustained in water. Approximately 95% of the fluid is made of water and the remaining 5% is composed of oil. These emulsions have excellent fire resistance and heat-transfer capabilities, but poor lubricity and poor corrosion protection.

Due to these poor lubricity characteristics, water-in-oil emulsions (also known as inverse emulsions) are better performing fluids. These are 40% water and 60% oil. It provides more balance of heat-transfer properties, lubricity, and corrosion protection. The fire-resistance primarily comes from the water, which turns into steam and reduces the oil’s combustibility.

Water Glycols

Water-in-oil emulsions have seen declining market share due to the rise of Water Glycol Fluids. Water Glycols contain 35-45% water and the remaining contents are some sort of glycol, such as ethylene glycol. These Water Glycols offer some benefits such as a lower freezing point and excellent fire resistance. Water Glycols do have drawbacks, but many of these can be mitigated by various additive packages. These fluids can be used in a variety of applications, but speed and strength ratings are reduced due to the limited performance of the fluid. Despite this, Water Glycols are one of the most popular fire resistance lubricants on the market today.

Phosphate Esters

Phosphate Esters provide the best fire resistance properties of any fluid. This is due to their natural molecular structure. They are non-corrosive, have excellent oxidative stability, great anti-wear characteristics, and are suitable for use up to 150 C. Despite this, they have been losing popularity due to stringent compatibility and maintenance concerns. They are still popular for aircraft and military applications. Additionally, they require special seals and coatings and require special care during disposal.

Polyol Esters

Polyol ester fluids have gained popularity due to its fire resistance properties, excellent lubricity, and good viscosity stability across different temperatures. These contain additive packages to impart good performance and high thermal properties. These are much more compatible and versatile than phosphate esters. This has led to their rising popularity and market share in recent years.

Maintenance and Other Considerations

When switching to fire-resistant fluids, compatibility must be considered before restarting the equipment. By carefully draining the machine, this decreases the likelihood of any incompatibility issues.

High-water content fluids require a lot more maintenance and care to ensure they perform properly. Water provides a great medium for bacteria and biocide treatments are recommended to prevent bacteria growth. As temperatures rise, water evaporates and needs to be replaced to ensure the fluids cooling properties are not compromised. pH levels should be monitored along with corrosiveness and wear protection. It is important to follow proper storage practices to maximize efficacy and shelf life.

Like any other oils, fire-resistant fluids degrade in heat and reduce oxidative stability. It is important to note rotating pressure vessel oxidation test (RPVOT) values to ensure your fluid has enough oxidative stability.

Conclusion

Fire-resistant fluids are great options for equipment and environments that are susceptible to fires. If you have high-pressure machines, it is imperative to consider fire-resistant fluids to prevent potential sprays that can ignite. Twin Specialties offers both water glycols and polyol esters to meet your needs. Contact Twin Specialties for product information.

A Guide to Base Oil Groups

In any oil-based lubricant the base oil will compose 80-99% of the product you use. What are differences in the main ingredient of your lubricant? The American Petroleum Institute classifies base oils into 5 groups. These classifications are based on the chemical composition of the base oil and the treatment of the base oil.

If a base oil is classified as Group I-III, that base oil will be composed of crude oil that has been treated. The differences depend on the treatment processes applied to the oil.

Petroleum Base Oils

Group I

Group I base oils are the least refined base oil. Two main characteristics of Group I base oils are that they are composed of less than 90% saturates and/or greater than 0.03% sulfur. If either of these conditions are satisfied, then the base oil will be classified as Group I. The only process that is used is solvent refining, which allows Group I base oil products to be cheaper than their more refined equivalents. These are generally used for less-demanding applications and could be ideal for applications where lubricant consumption is high.

Group II

Group II base oils are more refined than Group I. In addition to solvent refining, these oils are also hydrocracked purify the oil. Unlike Group I base oils, these base oils must contain over 90% saturates and less than 0.03%. The greater percentage of saturates gives these lubricants better antioxidation properties than Group I base oils.

Failure to meet either of these requirements will result in a Group I classification. These products also have a viscosity index of 80-120. These oils have good performance in volatility, oxidation stability, wear prevention, and flash point. They only have fair performance in cold temperature environments. Given costs of treatment today, Group II lubricants are most commonly used today and many users have switched from Group I oils to Group II oils.

Unofficially, there is a Group II+ that are composed of high-end Group II base oils. These base oils must have a viscosity index of 110-120 to be considered Group II+.

Group III

Group II base oils must meet the same conditions (saturates and sulfur) as Group II, but also must have a viscosity index greater than 120. These base oils are severely hydrocracked, hydroisomerized, and hydrotreated to crate the best grade of petroleum base oil. These products offer superior stability and molecular uniformity, which makes them ideal for some semi-synthetic lubricants.

Some people consider Group III base oils to be synthetic. The API classifies them as mineral oil since they are derived from crude oil. They do mimic characteristics of synthetic oils including high viscosity indices. A lawsuit between Mobil and Castrol occurred due to Castrol marketing their Syntec lubricant as a synthetic even though it was composed of Group III base oils. In a 1999 ruling, the product was allowed to marketed as a synthetic.

Many people reject the decision and only consider Group IV and Group V base stocks as “synthetic.” Some Group III lubricants outperform Group IV lubricants if they contain excellent anti-wear, anti-oxidant, and other additives. Similar to Group II, Group III base oils have an unofficial Group III+, which consist of Group III oils that have a “Very High Viscosity Index (VHVI).” The VHVI minimum is anywhere between 130-140.

Synthetic Base Oils

Group IV

Group IV base oils are synthetic base oils that composed of polyalphaolefins (PAOs). These products have a viscosity index of 125-200. These base oils are not extracted from crude oil, but made from small uniform molecules. The uniformity and manufacturing of these oils allows for predictable properties that assure performance in tough conditions. These properties include extreme temperature stability, which makes these products ideal for cold and hot weather climates.

Lubricants composed of polyinternalolefins (PIOs) are considered to be in the unofficial Group VI. Similar to PAOs, PIOs use different chemicals in its synthesis process to obtain an even higher viscosity index. Their official API classification would be Group V. Certain food grade lubricants are composed of Group IV PAOs.

Group V

Group V base oils are any base oil that is not classified as a Group I-IV base oil. Common Group V base oils are polyalkylene glycols (PAGs) and various esters. One exception is white oil, which is a very pure lubricant commonly used in cosmetics and food processing. Also used in food grade lubricants, Group V base oils such as PAGs or esters can be used in certain biodegradable base stocks rather than vegetable or seed oils. It is important to note that most PAGs are only compatible with other PAGs.

Key Takeaways

When selecting a lubricant, it is important to understand what base oil is used. Given that the base oil is 80-99% of a lubricant, you should know what base oil you are using. Upgrading the Group III or Group IV could improve performance and reduce consumption. Twin Specialties offers a variety of industrial and specialty lubricants made from a variety of base stocks to meet your operating and budgetary requirements.

Pros & Cons of Biodegradable Lubricants

In the next installment of our Biodegradable Lubricants series we examine the pros and cons of biodegradable lubricants. How do these lubricants compare to their petroleum-based counterparts? Previously we examined: biodegradability standards, biodegradable base stocks and biodegradable lubricant products. However, are these products right for you? We will look at some pros and cons to see if biodegradable lubricants are the right choice for you.

Pros of Biodegradable Lubricants

  • Excellent lubricity; superior to that of mineral oil
  • Higher viscosity index than mineral and synthetic oils
  • Higher flash point than mineral and synthetic oils
  • Less toxic and readily biodegradable
  • Renewable and reduce dependency on imported petroleum
  • New biotechnology has produced genetically-modified seeds designed for use in lubricants
  • Metal-wetting attraction makes them good for keeping dirt and debris off metal surfaces
  • Water-soluble PAGs are ideal for fire-resistant lubricants
  • Ideal for industries and applications where oil comes in contact with the environment
  • No potential for bioaccumulation (build-up in organism fatty tissue)
  • Price premiums are expected to decline with further market development

Cons of Biodegradable Lubricants

  • Lubricity so potent, friction modifiers must be added to reduce slippage in certain applications
  • Insufficient oxidative stability; oil must be treated or modified to ensure performance (which increase costs)
  • Small amounts of water can cause serious foaming and degradation
  • Cannot withstand high reservoir temperatures (usually greater than 80 C)
  • Vegetable base stocks must be hydrogenated to combat low oxidative stability
  • Low pour point; can be improved by winterization
  • Synthetic esters can be used for cold-temperature environments, but reduce bio-based properties
  • Synthetic oils are limited to which additives they can use due to biodegradability standards
  • PAGs can emulsify water, which can cause foaming, sludge, and corrosion
  • High price premiums for synthetic-based products

Conclusion

Biodegradable lubricants have significant potential to perform better than mineral oils. Developments in biotechnology could allow for specially formulated base oils that will address the current short comings of vegetable oils. As demand increases, price premiums will decrease and the we will become less dependent on petroleum. Synthetic oils already provide superior performance, albeit at a higher cost. Environmental concerns will drive these developments and shift the lubricant market towards biodegradable and environmentally accepted lubricants. To learn more, check out this EPA report on Environmentally Accepted Lubricants (EALs).

Twin Specialties Offers Biodegradable Lubricants

No matter your application or environmental requirements, Twin Specialties can meet your manufacturing, marine, or agricultural needs. We offer a variety of lubricants including: Shell Naturelle, Castrol Performance Bio, and various Food Grade lubricants. Contact Twin Specialties for a quote.

What are Biodegradable Lubricants?

As the world’s petroleum reserves are extracted, scarcity increases, thus driving oil and lubricant prices higher. This economic burden will force end-users and manufacturers to develop alternatives that are cost effective, readily available, and sustainable. The answer to these concerns are biodegradable lubricants.

Biodegradable Lubricants Defined

Biodegradable lubricants have the ability to degrade naturally by the actions of biological organisms. Petroleum is naturally occurring and is considered inherently biodegradable. However, that does not mean they can be marketed, sold, and treated as biodegradable. When we refer to biodegradable lubricants, we are discussing lubricants that are readily biodegradable.

Determining Biodegradability

Biodegradable lubricants must meet the ISO 9439 or OECD 301B standards. These standards state that a lubricant that has degraded by more than 60% within 28 days is readily biodegradable. The tests involve treating a lubricant sample with microorganisms in the presence of oxygen and measuring the CO2 produced by the microorganisms. As mentioned before, petroleum-based lubricants are inherently biodegradable, but not readily biodegradable because they fail to meet these standards. Petroleum-based lubricants naturally degrade at a rate of 15-35% in 28 days, falling short of the required 60%.

Additionally, the lubricant must be of “low toxicity.” There are a variety of tests used to determine toxicity. These tests involve fish, daphnia, and other organisms. In their pure form, mineral oil and vegetable oil show little toxicity, but lubricants are not just pure oil. As additives are incorporated into formulations, the toxicity increases. Additives are added to make up for any performance shortcomings of biodegradable base stocks.

Types of Biodegradable Base Stocks

Most biodegradable lubricants use vegetable oil, synthetic esters, polyalkylene glycols (PAGs), or a combination of these as base stocks. Vegetable oils have been used for years when petroleum was in short supply. They were popular during World War I and World War II due to oil rationing and came back in popularity during oil embargo in the 1970s. Vegetable oils declined in popularity due to the availability of low-cost oil after Desert Storm. Their popularity is beginning to rise as more manufacturers and end-users are faced with climate change and sustainability concerns. Some common vegetable oils used are soybean oil, cottonseed oil, olive oil, sunflower oil, and canola oil. To improve performance, farmers are beginning to grow genetically modified crops that are designed and engineered for use in lubricants.

Synthetic base stocks, such as esters and PAGs, are also used to boost performance when vegetable oils cannot get the job done. PAGs are effective, however they have a few issues that should be considered. PAGs are incompatible with other oils and can cause problems if inadvertently mixed with non-PAG oils. PAGs can also react poorly with seals and paints. This is why synthetic esters are preferred for biodegradable lubricants. Synthetic esters are typically added to vegetable-oil based lubricants to improve low temperature properties. These serve better than light mineral oils as synthetic esters are less toxic and more biodegradable.

Biodegradable Lubricant Products

Many applications and machines now can be lubricated with biodegradable lubricants and meet all performance requirements. Products that can be composed of soybean oils include:

  • Food grade hydraulic fluids and greases
  • Automotive, railroad, and machine greases
  • Tractor transmission and industrial hydraulic fluids
  • Chainsaw bar oils
  • Gear lubricants
  • Compressor oils
  • Transmission and transformer line cooling fluids

Many more products are in development and could become viable in lubricant markets soon. These include:

  • Two-cycle engine oils
  • Metalworking fluids
  • Specialty lubricants

With more resources and demand for biodegradable lubricants, engineers and manufacturers can research and develop more products that perform more applications, perform better than mineral oils, and remain price competitive.

Biodegradable lubricants are highly popular in applications and industries where environmental and safety concerns are high. Marine and agricultural industries need these lubricants as contamination could have devastating effects. According to Total Lubricants, a single liter of oil can pollute as much as 1,000,000 liters of water. In those applications, biodegradable lubricants are essential. Some government regulations ensure that these industries use biodegradable lubricants that do not harm consumers and operators in the event of leakage.

Twin Specialties Offers Biodegradable Lubricants

No matter your application or environmental requirements, Twin Specialties can meet your manufacturing, marine, or agricultural needs. We offer a variety of lubricants including: Shell Naturelle, Castrol Performance Bio, and various Food Grade lubricants. Contact Twin Specialties for a quote.

A Guide to Food Grade Lubricants

In the food and beverage industry, health, safety, and quality are of the utmost importance. The ever-evolving standards of food and beverage safety make it important to ensure your plant is deploying the proper lubricants and cleaners. Not only do you have to meet performance standards, you also have to monitor leakage to ensure that final products are not getting contaminated. We will examine the evolving standards of food-grade lubricants and cleaners as well as the challenges in finding the right products to meet both health and performance standards.

From USDA to NSF

The original designations created by the USDA sought to organize food-grade lubricants into three categories. The current standards are listed below for each category:

  • H1 lubricants are used in food-processing environments where there is the possibility of incidental food contact. These lubricants are tasteless, odorless and inert. H1 lubricants are safe for human consumption in small amounts, under 10 parts per million (ppm). They are most often used in for machinery such as conveyors and mixers. Applications of these lubricants include: blending, cutting, bottling, brewing and many more.
  • H2 lubricants are used on equipment and parts where there is no possibility of incidental food contact, such as forklifts. Even though there is no contact, H2 lubricants must adhere to strict toxicology standards. H2 lubricants may not contain trace elements of: carcinogens, mutagens, teratogens, mineral acids or heavy metals.
  • H3 soluble oils are used to prevent rust on hooks, trolleys, and similar equipment. These products are typically made of edible oils such as: corn oil, sunflower oil or soybean oil. H3 lubricants are inherently biodegradable and comply with 21 CFR Section 172.860 and 172.878. They also comply with 21 CFR 182 and 184 in regards to GRAS substances.
  • 3H release agents are used on surfaces with direct contact to prevent food from adhering during processing. These lubricants can be used to aid in processes where contact is unavoidable, such as removing baked goods from a mold.
  • HT1 are heat transfer fluids used in primary and secondary heating and cooling systems in food processing facilities. These must comply with 21 CFR 178.3570 and 21 CFR 172.

The USDA served as an authority for approval and compliance. Manufacturers had to prove all components were allowable substances under 21 CFR 178.3570. The USDA stopped issuing registrations on September 30, 1998. Since then, many organizations have adopted and modified these standards.

After 1998, The German Institute for Standardization (DIN) submitted a standard to the International Organization for Standardization (ISO). Eventually the ISO adopted ISO 21469, which pertains to lubricant manufacturing, and ISO 22000, which pertains to food safety systems. However, the most recognized standards are those put forth by the National Sanitation Foundation (NSF).

As a successor to the USDA, the NSF has updated the USDA standards to improve health and safety for consumers. The current NSF standards are similar to the old USDA standards, using the H1, H2, and H3 designations. Additionally, the NSF created the HX-1 standard for ingredients. These HX-1 ingredients are pre-screened and meet requirements for finished H1 lubricants. The NSF has established itself as the recognized international standard and operates in over 80 countries around the world.

Selecting your Food-Grade Product

In the food & beverage industry, health and safety is by far the most important concern. One contamination, recall, or illness outbreak can do irreparable damage to a company’s brand and business. Therefore, it is imperative to consider selecting products that go beyond required standards. Opting to use H1 lubricants is an excellent example of meeting compliance and protecting your brand. This eliminates the possibility of using an H2 lubricant when an H1 is required. H1 lubricants can act as insurance to your brand’s equity and will reduce liability in the event of equipment or plant issues.

Performance is key when selecting a lubricant, but achieving peak performance may be more difficult with food-grade lubricants. H1 products tended to fall short compared to their H2 counterparts. This was due to the limited number of H1-registered additives compared to H2-registered additives (including zinc-based components).Food & Beverage

New NSF HX-1 additive packages have dramatically improved the performance of H1 lubricants while also meeting the rigorous standards set forth by NSF H1 lubricants. For grease thickeners, aluminum sterate, aluminum complex, organo clay, polyurea and calcium sulfonate meet H1 standards (lithium thickened greases do not). You can now use an H1 lubricant and achieve the high performance demanded from your business. It simplifies the selection process by allowing you to use H1 lubricants throughout your plant.

These additives are now paired with synthetic base oils such as polyalphaolefins (PAOs), polyalkylene glycols (PAGs), and esters. These base oils along with HX-1 additives can deliver premium performance while protecting the integrity of your brand. Selecting a product also depends on your specific processes and it is important to consider unique contaminants that may affect product performance.

Other considerations may include dietary standards. It is important to ensure your lubricant meets any Kosher or Halal requirements. Failing to do so may result in products not suitable for those whose follow Kosher or Halal diets. This results in a smaller customer base and will affect bottom lines. It could damage brand integrity if a product is marketed as Kosher or Halal and is later found to fall short of these requirements.

Takeaways

Although no government is responsible for food-grade lubricant standards, the NSF has established itself as a leader in food-grade lubricant regulations. Operating as a nonprofit in over 80 countries, the NSF ensures that your food-grade lubricants meet their rigorous standards. Modern advancements in additive technology and base oil technology have led to lubricants that are NSF compliant and meet the highest performance standards. There is no need to sacrifice safety for quality anymore.

Twin Specialties offers a wide-range of food-grade products including lubricants and cleaners. We offer products from Castrol, CRC, Lubriplate, and many more to meet your food and beverage manufacturing needs. Contact us to learn more or get a quote.

Should I Switch to Synthetic Coolants

For your metalworking operation, you have a variety of options in selecting a coolant to use. The first decision is selecting which classification of metalworking lubricant to use. The four main classifications are:

When selecting which fluid classification, it is important to consider: cooling, lubrication, chip removal, and corrosion protection. Each classification has its strengths and weaknesses, which should be considered when evaluating coolant needs. For certain processes, a neat oil may be better than a semi-synthetic and vice versa.

Let’s examine synthetic coolants. These contain zero mineral oil content, hence synthetic coolant. When diluted, the fluid appears transparent and is a true solution with no droplet formation. One of the main benefits of synthetic coolants is zero foaming. Foaming generally appears in fluids with higher mineral oil content. If your synthetic fluid begins to foam, it is a clear sign that the coolant is contaminated.

The chemical composition of synthetic coolants makes for a robust product and more durable solution. Synthetics are much more stable than other classifications of metalworking fluids. The robust chemistry can create solutions that can reject all tramp oils. With less tramp oils in the sump, this creates a higher performing product and less likely to become contaminated.

This allows for a longer-lasting solution and higher efficiency in recycling the fluid. To offset the higher costs of synthetic coolants, fluid consumption is reduced because the fluid is a true solution. Less concentrate is needed to recharge the solution; therefore, it will take longer to use entire container.

Metalworking fluid selection is based on finding the balance between cooling and lubrication. Synthetic lubricants are preferred in operations where cooling is important in a metalworking fluid. They are formulated for rapid heat dissipation. If your process generates a lot of heat, synthetics may be preferable to ensure temperature control and high performance.

The fluid will last longer, however that is only if you are using best practices in fluid management. Synthetics are designed for specific concentrations and are less forgiving than other classifications of metalworking fluids. Tighter concentration control is needed for synthetics and you have to monitor the solution daily. Even though fluid management is more rigorous, it is easier to control and measure concentration because it is a transparent and droplet-free solution.

Whether you are facing foaming problems, high temperature operations or shorter coolant lifespans, the decision to switch to a synthetic coolant may be one to consider. Even though synthetic coolants are generally more expensive than other coolant classifications, the benefits will reveal themselves as you use the synthetic coolant. A synthetic coolant will last longer than a soluble oil and is much easier to reclaim and recycle. The performance of synthetic coolants is superior than semi-synthetics and will cool the work-piece and tool more effectively. Superior chemical formulation will protect your sump from tramp oils and other outside contamination. This protection along with zero-foam will keep your operation running longer with reduced downtime. Your coolant concentrate will last longer and can create significant cost savings over time.